
이전 과정 복습

SQL 기초 및 고급

1. 데이터베이스 프로그래밍의 개념

2. PL-SQL

3. 데이터베이스 연동 자바 프로그래밍

4. 데이터베이스 연동 웹 프로그래밍

• 데이터베이스 프로그래밍의 개념을 이해한다.

• PL-SQL의 문법과 사용방법을 알아본다.

• 자바 프로그램과 데이터베이스를 연동하는 방법을

알아본다.

• JSP 프로그램과 데이터베이스를 연동하는 방법을

알아본다.

01. 데이터베이스 프로그래밍의 개념

‘프로그래밍’이란?
– 프로그램을 설계하고 소스코드를 작성하여 디버깅하는 과정

데이터베이스 프로그래밍이란?
– DBMS에 데이터를 정의하고 저장된 데이터를 읽어와 데이터를

변경하는 프로그램을 작성하는 과정
– 일반 프로그래밍과는 데이터베이스 언어인 SQL을 포함한다는

점이 다름
SQL

전용 프로그램
(SQL)

DBMS

DB

(a) SQL Interface

응용
프로그램

(SQL + 자바)

DBMS

DB

(b) 삽입 프로그래밍

그림 5-1 데이터베이스 프로그래밍

01. 데이터베이스 프로그래밍의 개념

데이터베이스 프로그래밍 방법

Œ SQL 전용 언어를 사용하는 방법
SQL 자체의 기능을 확장하여 변수, 제어, 입출력 등의 기능을 추가한 새로운 언
어를 사용하는 방법.
Oracle은 PL/SQL 언어를 사용하며, SQL Server는 T-SQL이라는 언어를 사용함.

� 일반 프로그래밍 언어에 SQL을 삽입하여 사용하는 방법
자바, C, C++ 등 일반 프로그래밍 언어에 SQL 삽입하여 사용하는 방법.
일반 프로그래밍 언어로 작성된 응용 프로그램에서 데이터베이스에 저장된
데이터를 관리, 검색함. 삽입된 SQL문은 DBMS의 컴파일러가 처리함.

Ž 웹 프로그래밍 언어에 SQL을 삽입하여 사용하는 방법
호스트 언어가 JSP, ASP, PHP 등 웹 스크립트 언어인 경우다.

� 4GL(4th Generation Language)
데이터베이스 관리 기능과 비주얼 프로그래밍 기능을 갖춘 ‘GUI 기반 소프트웨어
개발 도구’를 사용하여 프로그래밍하는 방법. Delphi, Power Builder, Visual Basic
등이 있음.

01. 데이터베이스 프로그래밍의 개념

그림 5-2 DBMS 플랫폼과 데이터베이스 프로그래밍의 유형

01. 데이터베이스 프로그래밍의 개념

특징 Access SQL
Server Oracle MySQL DB2 SQLite

제조사 마이크로
소프트사

마이크로
소프트사

오라클사 오라클사 IBM사
리처드 힙
(오픈소스)

운영체제
기반 윈도우 윈도우

윈도우,
유닉스,
리눅스

윈도우,
유닉스,
리눅스

유닉스
모바일 OS
(안드로이드,
iOS 등)

용도 개인용
DBMS

윈도우
기반
기업용
DBMS

대용량 데
이터베이
스를 위한
응용

소용량 데
이터베이
스를 위한
응용

대용량
데이터
베이스
를 위한
응용

모바일전용
데이터
베이스

표 5-1 DBMS의 종류와 특징

02. PL/SQL

프로시저
트리거
사용자 정의 함수
PL/SQL 문법 요약

2. PL/SQL

Procedural Language/Structured Query Language의 줄임말로
데이터베이스 응용 프로그램을 작성하는 데 사용하는 오라클의
SQL 전용 언어.
SQL 전용 언어로 SQL 문에 변수, 제어, 입출력 등의 프로그래밍
기능을 추가하여 SQL 만으로 처리하기 어려운 문제를 해결함.
PL/SQL은 SQL Developer에서 바로 작성하고 컴파일한 후 결과를
실행함.

⑤

PL/SQL
개발 환경

프로그래머

오라클오라클

DB

그림 5-3 PL/SQL 개발 환경

2.1 프로시저

실행 결과③

프로시저 정의①

실행
버튼②

객체 확인④

그림 5-4 프로시저를 정의하는 과정

2.1 프로시저

프로시저를 정의하려면 CREATE PROCEDURE 문
을 사용함.

정의 방법
– PL/SQL은 선언부와 실행부(BEGIN-END)로 구성됨.

선언부에서는 변수와 매개변수를 선언하고, 실행부에서는

프로그램 로직을 구현함.

– 매개변수(parameter)는 저장 프로시저가 호출될 때 그 프로시저

에 전달되는 값임.

– 변수(variable)는 저장 프로시저나 트리거 내에서 사용되는 값임.

– 소스코드에 대한 설명문은 /*와 */ 사이에 기술한다.

만약 설명문이 한 줄이면 이중 대시(--) 기호 다음에 기술해도 됨.

2.1.1 삽입 작업을 하는 프로시저

예제 5-1 Book테이블에 한 개의 투플을 삽입하는 프로시저 (InsertBook)

프로시저로 데이터를 삽입 작업을 하면 좀 더 복잡한 조건의 삽입
작업을 인자 값만 바꾸어 수행할 수도 있고, 저장해두었다가 필요
할 때마다 호출하여 사용할 수도 있음.

01 CREATE OR REPLACE PROCEDURE InsertBook(
02 myBookID IN NUMBER,
03 myBookName IN VARCHAR2,
04 myPublisher IN VARCHAR2,
05 myPrice IN NUMBER)
06 AS
07 BEGIN
08 INSERT INTO Book(bookid, bookname, publisher, price)
09 VALUES(myBookID, myBookName, myPublisher, myPrice);
10 END;
11
--
A /* 프로시저 InsertBook을 테스트하는 부분 */
B EXEC InsertBook(13, '스포츠과학', '마당과학서적', 25000);
C SELECT * FROM Book;--
A /* 프로시저 InsertBook을 테스트하는 부분 */
B EXEC InsertBook(13, '스포츠과학', '마당과학서적', 25000);
C SELECT * FROM Book;

2.1.1 삽입 작업을 하는 프로시저

그림 5-5 InsertBook 프로시저를 실행한 후 Book 테이블

2.1.2 제어문을 사용하는 프로시저

PL/SQL의 제어문은 어떤 조건에서 어떤 코드가 실행되
어야 하는지를 제어하기 위한 문법으로, 절차적 언어의
구성요소를 포함함.

구문 의미 문법

BEGIN-END
• PL/SQL 문을 블록화시킴
• 중첩 가능

BEGIN
{ SQL 문 }
END

IF-ELSE
• 조건의 검사 결과에 따라 문장을 선택적으로 수
행

IF <조건> SQL 문
[ELSE SQL 문]
END IF;

FOR
•counter 값이 범위 내에 있을 경우 FOR 문의 블
록을 실행

FOR counter IN <범위>
{SQL 문}
END LOOP

WHILE • 조건이 참일 경우 WHILE 문의 블록을 실행

WHILE <조건>
{ SQL 문 | BREAK |
CONTINUE }
END LOOP

RETURN
• 프로시저를 종료
• 상태값을 정수로 반환 가능

RETURN [<정수>]

표 5-2 PL/SQL의 제어문

2.1.2 제어문을 사용하는 프로시저

01 CREATE OR REPLACE PROCEDURE BookInsertOrUpdate(
02 myBookID NUMBER,
03 myBookName VARCHAR2,
04 myPublisher VARCHAR2,
05 myPrice INT)
06 AS
07 mycount NUMBER;
08 BEGIN
09 SELECT COUNT(*) INTO mycount FROM Book
10 WHERE bookname LIKE myBookName;
11 IF mycount!=0 THEN
12 UPDATE Book SET price = myPrice
13 WHERE bookname LIKE myBookName;
14 ELSE
15 INSERT INTO Book(bookid, bookname, publisher, price)
16 VALUES(myBookID, myBookName, myPublisher, myPrice);
17 END IF;
18 END;
19
--
A /* BookInsertOrUpdate 프로시저를 실행하여 테스트하는 부분 */
B EXEC BookInsertOrUpdate(15, '스포츠 즐거움', '마당과학서적', 25000);
C SELECT * FROM Book; /* 15번 투플 삽입 결과 확인 */
D /* BookInsertOrUpdate 프로시저를 실행하여 테스트하는 부분 */
E EXEC BookInsertOrUpdate(15, '스포츠 즐거움', '마당과학서적', 20000);
F SELECT * FROM Book; /* 15번 투플 가격 변경 확인 */

예제 5-2 동일한 도서가 있는지 점검한 후
삽입하는 프로시저(BookInsertOrUpdate)

--
A /* BookInsertOrUpdate 프로시저를 실행하여 테스트하는 부분 */
B EXEC BookInsertOrUpdate(15, '스포츠 즐거움', '마당과학서적', 25000);
C SELECT * FROM Book; /* 15번 투플 삽입 결과 확인 */
D /* BookInsertOrUpdate 프로시저를 실행하여 테스트하는 부분 */
E EXEC BookInsertOrUpdate(15, '스포츠 즐거움', '마당과학서적', 20000);
F SELECT * FROM Book; /* 15번 투플 가격 변경 확인 */

2.1.2 제어문을 사용하는 프로시저

그림 5-6 BookInsertOrUpdate 프로시저를 실행한 후 Book 테이블

2.1.3 결과를 반환하는 프로시저

01 CREATE OR REPLACE PROCEDURE AveragePrice(
02 AverageVal OUT NUMBER)
03 AS
04 BEGIN
05 SELECT AVG(price) INTO AverageVal FROM Book WHERE price IS NOT
06 NULL;
07 END;
08
--
A /* 프로시저 AveragePrice를 테스트하는 부분 */
B SET SERVEROUTPUT ON ;
C DECLARE
D AverageVal NUMBER;
E BEGIN
F AveragePrice(AverageVal);
G DBMS_OUTPUT.PUT_LINE('책값 평균: '|| AverageVal);
H END;

예제 5-3 Book 테이블에 저장된 도서의 평균가격을 반환하는 프로시저(AveragePrice)

그림 5-7 AveragePrice 프로시저를
실행한 결과

--
A /* 프로시저 AveragePrice를 테스트하는 부분 */
B SET SERVEROUTPUT ON ;
C DECLARE
D AverageVal NUMBER;
E BEGIN
F AveragePrice(AverageVal);
G DBMS_OUTPUT.PUT_LINE('책값 평균: '|| AverageVal);
H END;

2.1.4 커서를 사용하는 프로시저

커서(cursor)는 실행 결과 테이블을 한 번에 한 행씩 처
리하기 위하여 테이블의 행을 순서대로 가리키는 데 사
용함.

표 5-3 커서와 관련된 키워드

2.1.4 커서를 사용하는 프로시저

01 CREATE OR REPLACE PROCEDURE Interest
02 AS
03 myInterest NUMERIC;
04 Price NUMERIC;
05 CURSOR InterestCursor IS SELECT saleprice FROM Orders;
06 BEGIN
07 myInterest := 0.0;
08 OPEN InterestCursor;
09 LOOP
10 FETCH InterestCursor INTO Price;
11 EXIT WHEN InterestCursor%NOTFOUND;
12 IF Price >= 30000 THEN
13 myInterest := myInterest + Price * 0.1;
14 ELSE
15 myInterest := myInterest + Price * 0.05;
16 END IF;
17 END LOOP;
18 CLOSE InterestCursor;
19 DBMS_OUTPUT.PUT_LINE(' 전체 이익 금액 = ' || myInterest);
20 END;
21
--
A /* Interest 프로시저를 실행하여 판매된 도서에 대한 이익금을 계산 */
B SET SERVEROUTPUT ON;
C EXEC Interest;

예제 5-4 Orders 테이블의 판매 도서에 대한
이익을 계산하는 프로시저(Interest)

--
A /* Interest 프로시저를 실행하여 판매된 도서에 대한 이익금을 계산 */
B SET SERVEROUTPUT ON;
C EXEC Interest;

2.1.4 커서를 사용하는 프로시저

그림 5-8 Interest 프로시저를 실행한 결과

2.2 트리거

트리거(trigger)는 데이터의 변경(INSERT, DELETE,

UPDATE)문이 실행될 때 자동으로 따라서 실행되는

프로시저를 말함.

DATA 변경 문
(INSERT, DELETE, UPDATE)

BEFORE 트리거

AFTER 트리거

그림 5-9 데이터 변경과 트리거의 수행

2.2 트리거

A /* 실습을 위한 Book_log 테이블 생성 */
B CREATE TABLE Book_log(
C bookid_l NUMBER,
D bookname_l VARCHAR2(40),
E publisher_l VARCHAR2(40),
F price_l NUMBER);
--
01 /* 파일명 : AfterInsertBook.sql */
02 CREATE OR REPLACE TRIGGER AfterInsertBook
03 AFTER INSERT ON Book FOR EACH ROW
04 DECLARE
05 average NUMBER;
06 BEGIN
07 INSERT INTO Book_log
08 VALUES(:new.bookid, :new.bookname, :new.publisher, :new.price);
09 DBMS_OUTPUT.PUT_LINE('삽입 투플을 Book_log 테이블에 백업..');
10 END;
--
G /* 삽입한 내용을 기록하는 트리거 확인 */
H INSERT INTO Book VALUES(14, '스포츠 과학 1', '이상미디어', 25000);
I SELECT * FROM Book WHERE bookid='14';
J SELECT * FROM Book_log WHERE bookid_l='14'; /* 결과 확인 */

예제 5-5 새로운 도서를 삽입한 후 자동으로 Book_log 테이블에 삽입한 내용을 기록하는 트리거

--
G /* 삽입한 내용을 기록하는 트리거 확인 */
H INSERT INTO Book VALUES(14, '스포츠 과학 1', '이상미디어', 25000);
I SELECT * FROM Book WHERE bookid='14';
J SELECT * FROM Book_log WHERE bookid_l='14'; /* 결과 확인 */

A /* 실습을 위한 Book_log 테이블 생성 */
B CREATE TABLE Book_log(
C bookid_l NUMBER,
D bookname_l VARCHAR2(40),
E publisher_l VARCHAR2(40),
F price_l NUMBER);

2.2 트리거

그림 5-10 Book 테이블에 투플을 삽입하여 트리거가 실행된 결과

G /* 삽입한 내용을 기록하는 트리거 확인 */
H INSERT INTO Book VALUES(14, '스포츠 과학 1', '이상미디어',
25000);
I SELECT * FROM Book WHERE bookid='14';
J SELECT * FROM Book_log WHERE bookid_l='14'; /* 결과 확인 */

2.3 사용자 정의 함수

사용자 정의 함수는 수학의 함수와 마찬가지로 입력된
값을 가공하여 결과 값을 되돌려줌.

예제 5-6 판매된 도서에 대한 이익을 계산하는 함수(fnc_Interest)

01 CREATE OR REPLACE FUNCTION fnc_Interest(
02 price NUMBER) RETURN INT
03 IS
04 myInterest NUMBER;
05 BEGIN
06 /* 가격이 30,000원 이상이면 10%, 30,000원 미만이면 5% */
07 IF Price >= 30000 THEN myInterest := Price * 0.1;
08 ELSE myInterest := Price * 0.05;
09 END IF;
10 RETURN myInterest;
11 END;
12
--
A /* Orders 테이블에서 각 주문에 대한 이익을 출력 */
B SELECT custid, orderid, saleprice, fnc_Interest(saleprice) interest
C FROM Orders;

--
A /* Orders 테이블에서 각 주문에 대한 이익을 출력 */
B SELECT custid, orderid, saleprice, fnc_Interest(saleprice) interest
C FROM Orders;

2.3 사용자 정의 함수

그림 5-11 Orders 테이블의 건별 이익금 계산

2.3 사용자 정의 함수

프로시저 트리거 사용자 정의 함수

공통점 저장 프로시저임, 오라클의 경우 PL/SQL로 작성

정의 방법 CREATE PROCEDURE 문 CREATE TRIGGER 문 CREATE FUNCTION 문

호출 방법 EXEC 문으로 직접 호출
INSERT, DELETE, UPDATE
문이 실행될 때 자동으로
실행됨

SELECT 문으로 호출

기능의
차이

SQL 문으로 할 수 없는
복잡한
로직을 수행

기본 값 제공, 데이터 제약
준수,
SQL 뷰의 수정, 참조무결
성 작업
등을 수행

속성 값을 가공하여 반환,
SQL 문에 직접 사용

표 5-4 프로시저, 트리거, 사용자 정의 함수의 공통점과 차이점

2.4 PL/SQL 문법 요약

구분 명령어

Data Definition
Language
(데이터 정의어)

CREATE TABLE
CREATE PROCEDURE
CREATE FUNCTION
CREATE TRIGGER
ALTER, DROP

Data
Manipulation
Language
(데이터 조작어)

SELECT
INSERT
DELETE
UPDATE

표 5-5 PL/SQL의 기본 문법

2.4 PL/SQL 문법 요약

구분 명령어

Data Types
(데이터 타입) NUMBER(n), VARCHAR2(n), DATE

Variables(변수) DECLARE 문으로 선언
치환(:= 사용)

Operator(연산자)

산술연산자 (+, -, *, /)
비교연산자 (=, ＜, ＞, ＞=, ＜=, ＜＞)
문자열연산자 (||)
논리연산자 (NOT, AND, OR)

표 5-5 PL/SQL의 기본 문법

2.4 PL/SQL 문법 요약

구분 명령어

Language
Element(주석) - -, /* */

Built-in
Function(내장 함
수)

숫자 함수 (ABS, CEIL, FLOOR, POWER 등)
집계 함수 (AVG, COUNT, MAX, MIN, SUM)
날짜 함수 (SYSDATE, NEXT_DAY, TO_CHAR 등)
문자 함수 (CHR, LENGTH, LOWER, SUBSTR 등)

Control of
Flow(제어문)

BEGIN-END
IF-THEN-ELSE
FOR LOOP–END LOOP
WHILE LOOP-END LOOP, EXIT

Data Control
Language
(데이터 제어어)

GRANT
REVOKE

표 5-5 PL/SQL의 기본 문법
(http://docs.oracle.com/cd/E11882_01/index.htm)

03. 데이터베이스 연동 자바 프로그래밍

소스코드 설명
프로그램 실습

03 데이터베이스 연동 자바 프로그래밍

항목 프로그램

데이터베이스 프로그램 오라클 11g r2

자바 컴파일러 JDK 버전 7

데이터베이스와 자바를 연결하는
드라이버

JDBC 드라이버(파일이름 ojdbc6.jar)

표 5-6 데이터베이스 연동 자바 프로그래밍 실습 환경

3.1 소스코드 설명

클래스
구분

클래스 혹은
인터페이스 주요 메소드 이름 메소드 설명

java.
lang Class Class for Name

(<클래스이름>)
<클래스이름>의 JDBC 드라이
버를 로딩

표 5-7 데이터베이스 접속 자바 클래스(java.sql)

3.1 소스코드 설명

클래스 구
분

클래스 혹은 인터페
이스 주요 메소드 이름 메소드 설명

java.sql

DriverManager
Connection
getConnection
(url, user, password)

데이터베이스 Connection 객체를 생성

Connection

Statement
createStatement()

SQL 문을 실행하는 Statement 객체를 생성

void close() Connection 객체 연결을 종료

Statement

ResultSet executeQuery
(String sql)

SQL 문을 실행해서 ResultSet 객체를 생성

ResultSet executeUpdate
(String sql)

INSERT/DELETE/UPDATE 문을 실행해서
ResultSet 객체를 생성

ResultSet

boolean first()
결과 테이블에서 커서가 처음 투플을 가리
킴

boolean next()
결과 테이블에서 커서가 다음 투플을 가리
킴

int getInt(<int>) <int>가 가리키는 열 값을 정수로 반환

String getString(<int>) <int>가 가리키는 열 값을 문자열로 반환

표 5-7 데이터베이스 접속 자바 클래스(java.sql)

자바 프로그램

3.1 소스코드 설명

오라클 DBMS오라클 DBMS

데이터베이스(Madang)

자바 프로그램

Driver
Manager

객체

Connection
객체

Statement
객체

ResultSet
객체

(a) 자바의 데이터베이스 연동 객체

그림 5-12 데이터베이스 연결 자바 객체들의 호출 관계

3.1 소스코드 설명

(b) 객체 간의 호출 순서

Driver manager

Connection

Connection

Statement

Statement

DB

DB

ResultSet

SQL

ResultSet

SQL

처리

처리

그림 5-12 데이터베이스 연결 자바 객체들의 호출 관계

3.2 프로그램 실습

단계 세부 단계 프로그램 참조

[1단계] DBMS 설치 및 환경설
정

① 오라클 11g r2 설치
② 오라클 접속을 위한 사용자(madang)
생성

오라클
11g

부록
A.1~A.3
부록 B.3

[2단계] 데이터베이스 준비
① 마당서점 데이터베이스 준비
(demo_madang.sql)

부록 B.3

[3단계]
자바 실
행

(A)
명령 프롬프트 이용

① 자바 컴파일러 설치
② JDBC 드라이버 설치
③ 자바 프로그램 준비(booklist.java)
④ 컴파일 및 실행

JDK
JDBC

부록
C.1~C.3

(B)
이클립스 이용

① 자바와 이클립스 개발도구 설치
② JDBC 드라이버 설치
③ 자바 프로그램 준비(booklist.java)
④ 컴파일 및 실행

JDK
Eclipse
JDBC

부록
C.1~C.4

표 5-8 자바 프로그램 실습 단계

<여기서 잠깐>
Oracle 11g r2 를 기준으로 테스트되어 있다. Oracle 11g Express 로 실험한다면 booklist.java의 아래 선언 문장을 xe로
수정한다.
=> String url="jdbc:oracle:thin:@localhost:1521:xe";

3.2 프로그램 실습

오라클 DBMS

PORT
1521번

자바 컴파일러JDBC
Library

오라클 사용자 인증
(madang, madang)

+

데이터베이스(madang)

자바 CLASS 자바 프로그램

1단계-①

1단계- ②

2단계- ②
3단계-② 3단계-①

1단계-③ 3단계-④ 3단계-③

그림 5-14 데이터베이스 연동 자바 프로그램의 실행 흐름도

3.2.1 [1단계] DBMS 설치 및 환경설정

Œ오라클 11g 설치
�오라클 접속을 위한 사용자(madang) 설정

3.2.2 [2단계] 데이터베이스 준비

Œ마당서점 데이터베이스 준비
(demo_madang.sql)

마당서점 데이터베이스의 샘플 데이터는 이미 3장에서
설치하였다.
이 책의 순서대로 실습을 진행하지 않았다면 부록 B.3을
참고하여 설치하면 된다.

3.2.3 [3단계(A)] 자바 실행 – 명령 프롬프트를 이용하는 방법

Œ 자바 컴파일러 설치 부록 C.2를 참고하여 설치한다.

� JDBC 드라이버 설치 부록 C.3을 참고하여 설치한다.

Ž 자바 프로그램 준비(booklist.java)
booklist.java 프로그램의 소스코드는 앞에서 설명하였다. booklist.java 파
일은 메모장에서 작성하거나 예제소스 폴더의 booklist.java를 가져와 사
용한다.

➍컴파일 및 실행

3.2.4 [3단계(B)] 자바실행 – 이클립스를 이용하는 방법

Œ 이클립스 개발도구 설치 부록 C.4를 참고하여 설치

� JDBC 드라이버 설치 부록 C.3을 참고하여 설치

* 이클립스에서 JDBC 드라이버는 프로젝트->Properties->Libraries->Add External
Jars 로 간편설치

Ž 자바 프로그램 준비(booklist.java) 285~286쪽 참고하여 설치

➍ 컴파일 및 실행

그림 5-23 이클립스에서 booklist.java 실행 결과 화면

04. 데이터베이스 연동 웹 프로그래밍

소스코드 설명
프로그램 실습

04. 데이터베이스 연동 웹 프로그래밍

항목 프로그램

데이터베이스 프로그램 오라클 11g r2

자바 컴파일러 JDK 버전 7

웹 서버 톰캣

데이터베이스와 자바를 연결하는 드
라이버

JDBC 드라이버(파일이름 ojdbc6.jar)

표 5-9 데이터베이스 연동 웹 프로그래밍 실습 환경

4.1 소스코드 설명

JSP 프로그램은 HTML 태그에 JSP 스크립트를 끼워 넣
어 작성하는데, JSP 스크립트 부분은 <% ... %>에 넣어
서 실행시킴.

booklist.jsp bookview.jsp

웹 서버(톰캣)

bookview.jsp
프로그램

booklist.jsp
프로그램

그림 5-24 booklist.jsp와 bookview.jsp의 호출 관계와웹에서실행된화면

4.2 프로그램 실습

단계 세부 단계 프로그
램 참조

[1단계] DBMS 설치 및

환경설정

① 오라클 11g r2 설치

② 오라클 접속을 위한 사용자

(madang) 생성

오라클

11g

부

록 .1~A.

3

부록 B.3

[2단계] 데이터베이스 준

비

① 마당서점 데이터베이스 준비

(demo_madang.sql)
부록 B.3

[3단계] JSP 실행

① 자바 컴파일러, 톰캣 설치

② JDBC 드라이버 설치

③ JSP 프로그램 준비

(booklist.jsp, bookview.jsp)

④ 실행

J아

톰캣

JDBC

부록

C.1~C.3

부록 C.5

표 5-10 JSP 프로그램 실습 단계

4.2 프로그램 실습

오라클 DBMS

PORT
1521번

톰캣
(웹서버)

JDBC
Library

오라클 사용자 인증
(madang / madang)

+

데이터베이스(Madang)

JSP 프로그램 웹 브라우저

1단계-①

1단계- ②

1단계- ②

3단계-② 3단계-①

1단계-③ 3단계- ③ 3단계- ④

그림 5-21 데이터베이스 연동 JSP 프로그램의 실행 흐름도

4.2 프로그램 실습

[1단계] DBMS 설치 및 환경설정
[2단계] 데이터베이스 준비
[3단계] JSP 실행

Œ 자바 컴파일러, JDBC 드라이버 설치
� 톰캣 설치 - 부록 C.5를 참고하여 설치한다.

<여기서 잠깐>
소프트웨어 버전(윈도우 7, 오라클 11g, Java, Tomcat) 이 변경되어 몇 가지 충돌이나 변경이 되어 수행이 안되는 경우 다음 사
항들을 먼저 체크해보자.

① [오라클 XMLDB와 Tomcat 포트 충돌 문제] 둘 다 8080 포트번호를 사용하므로 오라클 쪽 포트를 다음과 같이 8090으로
변경해준다.
- SQL> conn sys as sysdba
- SQL> EXEC DBMS+XDB.SETHTTPPORT(8090);

② [Tomcat의 JDBC 드라이버 인식문제] 톰캣에서 드라이버의 CLASSPATH를 다음과 같이 설정해준다.
- ojdb6.zip(혹은 ojdbc6.jar) 파일을 Tomcat 설치 폴더(CATALINA_HOME)의 lib 폴더 밑에 저장한다.
- (CATALINA_HOME)/bin/catalina.bat 파일에 다음 문장을 찾는다.

set "CLASSPATH=%CLASSPATH%;%CATALINA_HOME%\bin\tomcat-juli.jar“
- 이 문장 다음에 아래 문장을 적어서 CLASSPATH를 인식시킨다.

set "CLASSPATH=%CLASSPATH%;%CATALINA_HOME%\lib\ojdb6.zip"
- Tomcat을 다시 시작한다.

③ 오라클 인스턴스 이름 - Oracle 11g Express 로 실험한다면 booklist.jsp, bookview.jsp 프로그램내의 문장을 xe로 수정한
다. => String url="jdbc:oracle:thin:@localhost:1521:xe";

4.2 프로그램 실습

Ž JSP 프로그램 준비(booklist.jsp, bookview.jsp)
booklist.jsp 파일과 bookview.jsp 파일을 예제소스에서

가져와 사용한다.
작성된 프로그램은 톰캣 기본 폴더에 booklist 폴더를

생성하고 저장한다.

그림 5-26 booklist.jsp, bookview.jsp 파일 저장

4.2 프로그램 실습

� 실행

그림 5-23 booklist.jsp 실행 화면 그림 5-24 bookview.jsp 실행 화면

요약

1. 데이터베이스 프로그래밍
2. 삽입 프로그래밍
3. PL/SQL(Procedural Language/Structured Query

Language)
4. 저장 프로시저
5. 커서
6. 트리거
7. 연동
8. JDBC(Java Database Connectivity)

감사합니다.

