library(dplyr) exam <- read.csv("csv_exam.csv") exam %>% arrange(math) exam %>% arrange(desc(math)) exam %>% arrange(class,math) mpg <- as.data.frame(ggplot2 :: mpg) mpg %>% filter(manufacturer=="audi") %>% arrange(desc(hwy)) head(mpg) exam %>% mutate(total = math + english + science) %>% head exam %>% mutate(total = math + english + science, mean = (math + english + science)/3) %>% head exam %>%group_by(class) %>% summarise(mean_math = mean(math)) exam %>%group_by(class) %>% summarise(mean_sci = mean(science)) exam %>%group_by(class) %>% summarise(mean_math = mean(math), sum_math = sum(math), median_math = median(math), n = n()) test1 <- data.frame(id=c(1,2,3,4,5), midterm = c(60,70,80,90,95)) test2 <- data.frame(id=c(1,2,3,4,5), final = c(60,70,80,90,95)) total <- left_join(test1,test2,by = "id") total group_a <- data.frame(id=c(1,2,3,4,5), test = c(60,70,80,90,97)) group_b <- data.frame(id=c(6,7,8,9,10), test=c(70,80,90,12,56)) group_all <- bind_rows(group_a,group_b)